Bluetooth alternative sends signals through the human body

A team of researchers from the University of California, San Diego announced Tuesday that they had developed a proof-of-concept wireless transmission system that is both more efficient and more secure than Bluetooth. It works by sending data signals through your body’s natural magnetic field instead of over the air and could lead to a new class of ultra-low power wearables.

Bluetooth is the current king of short range wireless communication but it has a number of shortcomings. While BT works efficiently when there is a clear air path between the two devices, it requires a significant power boost to push the signal through obstacles like the human body, known as “path loss“. UCSD’s system doesn’t suffer from that problem because it uses the human body itself as a transmission medium to send magnetic signals between devices. In the prototype, PVC-wrapped wires coiled around the user’s extremities generate magnetic fields that transmit signal between the various body parts.

It operates in essentially the same fashion as an MRI or wireless medical implant, albeit at a far lower energy level. In fact, the research team estimates that the path loss associated with this technique is roughly 10 million times lower than Bluetooth. That should translate into significant energy savings and longer battery lives.

“A problem with wearable devices like smart watches is that they have short operating times because they are limited to using small batteries. With this magnetic field human body communication system, we hope to significantly reduce power consumption as well as how frequently users need to recharge their devices,” UCSD Ph.D student and lead author Jiwoong Park said in a statement.

Additionally, this system offers increased security over existing wireless standards. Bluetooth signals emanate omni-directionally from their source up to 30 feet. Anybody within that perimeter can, theoretically, pick up that signal and intercept the data. But because this system’s signal travels through the body, an eavesdropper would need to be all up in your grill, if not in direct physical contact, to intercept it. The team recently presented their findings at the 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society in Milan, Italy.

[Image Credit: UC San Diego Jacobs School of Engineering]

Filed under:
, ,

Comments

Tags: bluetooth, MagneticFields, Milan, UCSD

Source: Engadget - Read the full article here

Author: Daily Tech Whip

This article is part of our 'News Tiles' service. The site is currently in Beta. When it is fully operational you will be able to search through and arrange the 'Tiles' to display a keyword, product or technology over your chosen time period. For example you would be able to display all of the leading tech articles on the new Kindle Fire, in one spot in real time. You will also have access to our own original reporting and analysis as well as a polished place to post your own thoughts & reviews here, amongst the Daily Tech Whip Community. Please let us know if you have any feedback via the contact form or via Twitter. Don't forget to come back next week and see our full site and claim your name and your own free tech blog.

Share This Post On